Inhibition effect of cerium in hybrid sol–gel films on aluminium alloy AA2024†
نویسندگان
چکیده
Aluminium alloys such as AA2024 are susceptible to severe corrosion attack in aggressive solutions (e.g. chlorides). Conversion coatings, like chromate, or rare earth conversion coatings are usually applied in order to improve corrosion behaviour of aluminium alloys. Methacrylate-based hybrid films deposited with sol–gel technique might be an alternative to conversion coatings. Barrier properties, paint adhesion and possibly self-healing ability are important aspects for replacement of chromatebased pre-treatments. This work evaluates the behaviour of cerium as corrosion inhibitor in methacrylate silane-based hybrid films containing SiO2 nano-particles on AA2024. Hybrid films were deposited on aluminium alloy AA2024 by means of dipcoating technique. Two different types of coating were applied: a non-inhibited film consisting of two layers (non-inhibited system) and a similar film doped with cerium nitrate in an intermediate layer (inhibited system). The film thickness was 5 μm for the non-inhibited system and 8 μm for the inhibited system. Film morphology and composition were investigated by means of GDOES (glow discharge optical emission spectroscopy). Moreover, GDOES qualitative composition profiles were recorded in order to investigate Ce content in the hybrid films as a function of immersion time in 0.05 M NaCl solution. The electrochemical behaviour of the hybrid films was studied in the same electrolyte by means of EIS technique (electrochemical impedance spectroscopy). Electrochemical measurements provide evidence that the inhibited system containing cerium displays recovery of electrochemical properties. This behaviour is not observed for the non-inhibited coating. GDOES measurements provide evidence that the behaviour of inhibited system can be related to migration of Ce species to the substrate/coating interface. Copyright c © 2010 John Wiley & Sons, Ltd.
منابع مشابه
In Situ Formation of Decavanadate-Intercalated Layered Double Hydroxide Films on AA2024 and their Anti-Corrosive Properties when Combined with Hybrid Sol Gel Films
A layered double hydroxide (LDH) film was formed in situ on aluminum alloy 2024 through a urea hydrolysis method, and a decavanadate-intercalated LDH (LDH-V) film fabricated through the dip coating method. The microstructural and morphological characteristics were investigated by scanning electron microscopy (SEM). The corrosion-resistant performance was analyzed by electrochemical impedance sp...
متن کاملPreparation and electrochemical study of cerium–silica sol–gel thin films
Design and development of suitable multilayered systems for delaying corrosion advance in metals requires that both the alteration mechanisms of the metal and the behaviour and properties of the protective coatings be known. Coatings prepared by the sol–gel method provide a good approach as protective layers on metallic surfaces. This kind of coatings can be prepared from pure chemical reagents...
متن کاملتهیه و مشخصهیابی پوششهای هیبریدی سیلیکا- زیرکونیا حاوی بازدارنده سریم بر آلیاژ آلومینیوم 6061
Organic–inorganic hybrid coatings were prepared by sol–gel method and deposited on aluminum alloy 6061. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were used for structural study of the hybrid coatings. Adhesive strength of sol–gel coatings to the substrate was evaluated quantitatively and qualitat...
متن کاملProcessing and Characterization of AA2024/Al2O3/SiC Reinforces Hybrid Composites Using Squeeze Casting Technique
The present requirement of automobile industry is seeking lightweight material that satisfices the technical and technological requirements with better mechanical and tribological characteristics. Aluminium matrix composite ( AMC ) materials meet the requirements of the modern demands. AMCs are used in automotive applications as engine cylinders, pistons, disc and drum brakes. This paper inves...
متن کاملSynthesis and characterization of Alumina (Al2O3) nanoparticles prepared by simple sol-gel method
Alumina is one of the most widely used ceramic materials as catalysts, catalyst supports and absorbents, and also wear resistant coating. This study focused on fabricating and characterizing of alumina ceramic nanoparticles fabricated using new and simple sol-gel method. Aluminium oxide (Al2O3) nanoparticles were synthesized by iron (III) nitrate 9-hydrate as precursor. Physicochemical properti...
متن کامل